skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gevedon, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Brittle faults are widespread but rarely exposed in Marie Byrd Land, a part of the West Antarctic rift system, owing to enhanced erosion of zones of cataclasis by the regional ice sheet. Tourmaline-mineralized faults discovered at three locations in the Ford Ranges constitute a new record of fluid-rock interactions in this region of extended crust. Tourmaline resists re-equilibration, even during metamorphism, thus strongly aligned tourmaline from high-angle faults at Mt. Douglass, Mt. Dolber, and Lewissohn Nunatak likely contain direct records of fault-hosted fluids and timing of fault movements. The faults form an array oriented NNW-SSE and WNW-ESE, which displays brittle kinematic criteria indicating normal-oblique and strike-oblique displacement. Mirrored fault surfaces suggest formation during seismic slip. Tourmaline is concentrated within a 2 to 4 mm zone bordering the fault planes. Petrography and EMPA analyses show unzoned tourmaline , with the dravite variety at Lewissohn Nunatak and schorl at the other two sites. Fluid inclusions in dravite are tubular (A-axis-parallel), 10 to 15 um, and up to 25 um, in length, containing gas and fluid phases. Fluid inclusions in schorl are C-axis-parallel and breached. Tourmaline ∂18O ratios (n=4) range from 9.2 to 10.4 ± 0.1 ‰ VSMOW (average 9.7‰, s.dev. = 0.7). Paired quartz yield ∂18O values of 11.1 to 10.3 ± 0.1 ‰, and ∆Qtz-Trm values between 1.3 and 2.0. Brittle microfractures in parallel arrays, evident in thin section, indicate tensile opening along ENE- WSW axes, in accordance with outcrop evidence. The strong preferred orientation and uniform mineral composition of tourmaline indicate syntectonic growth of tourmaline along fault planes. ∆Qtz-Trm values suggest equilibration between host-rock quartz and tourmaline was not achieved, likely due to rapid tourmaline precipitation. Relative isotopic homogeneity between sites suggests similar fluid conditions across the region, for crust underlying a minimum area of 2000 km2. Preliminary results of tourmaline 40Ar/39Ar dating indicate broadly Cretaceous timing for fault-related fluid flow. Ongoing work seeks to determine the temperature of mineralizing fluids and evaluate whether the brittle array localizes geothermal heat beneath the contemporary icesheet. 
    more » « less
  2. Abstract Oxygen isotope ratios of garnet provide well-established means to investigate crustal fluid histories. Traditionally, δ18O values from skarn garnets have been used to track the hydrothermal evolution of an individual skarn body through time. We, however, use garnet from 14 skarns from the Jurassic (ca. 175 to ca. 148 Ma) Cordilleran margin arc (southwestern United States) to provide regional tectonic context to arc magmatism and hydrothermal activity. We document arc-wide garnet δ18O variability of ~19‰ (−8.9‰ to +10.3‰, n = 159), providing a record of contrasting meteoric fluid ingress between northern (Sierra Nevada) and southern (Mojave Desert) arc segments. Strongly negative garnet δ18O values (≤−3‰) are limited to the Mojave Desert arc segment and can only form in the presence of meteoric fluid, requiring shallow formation in subaerial crust. When combined with U-Pb garnet ages, the δ18O data provide a minimum radiometric age of local subaerial arc emergence and temporal constraint on the migration of the Jurassic paleoshoreline in the Mojave Desert section of the arc. 
    more » « less